Indoor air quality in a public building following smoking bans


Serval ID
Inproceedings: an article in a conference proceedings.
Publication sub-type
Abstract (Abstract): shot summary in a article that contain essentials elements presented during a scientific conference, lecture or from a poster.
Indoor air quality in a public building following smoking bans
Title of the conference
Joint Annual Meeting of the Swiss Respiratory Society, Swiss Society of Occupational Medicine, Swiss Paediatric Respiratory Society, Swiss Society for Thoracic Surgery, Davos (Switzerland), April 16/17, 2009
Huynh Cong Khanh, Farinelli Tiziana, Vu Duc Trinh
Publication state
Issued date
Swiss Medical Weekly
Introduction: Exposure to environmental tobacco smoke (ETS) is a major environmental risk factor. Indoor contaminants come from a variety of sources, which can include inadequate ventilation, volatile organic compounds (VOCs), biological agents, combustion products, and ETS. Because ETS is one of the most frequent causes of IAQ complaints as well as the high mortality of passive smoking, in June 2004 the University of Geneva made the decision to ban smoking inside the so called "Uni-Mail" building, the biggest Swiss University human science building of recent construction, and the ordinance was applied beginning in October 2004. This report presents the finding related to the IAQ of the "Uni-Mail" building before and after smoking bans using nicotine, suspended dust, condensate and PAHs level in air as tracers to perform an assessment of passive tobacco exposure for non-smokers inside the building.
Methods: Respirable particles (RSP) A real time aerosol monitor (model DataRAM)was place at sampling post 1, level ground floor. Condensate It consists in extracting any organic matter taken on the glass fibre filters by MeOH, and then measuring the total absorbent of the MeOH extract to the UV wavelength of 447 nm. Nicotine Nicotine was taken by means of cartridges containing of XAD-4 to the fixed flow of 0.5 L/min. The analytical method used for the determination of nicotine is based on gas chromatography with Nitrogen selective detector GC-NPD.
Results: Figure 1 shows the box plot density display of 3 parameters before and after smoking bans for all 7 sampling posts: dust, condensate and nicotine in air in μg/m3. Conclusion: Before the smoking ban, the level of the concentrations of respirable particles (RSP) is raised more, average of the day 320 μg/m3, with peaks of more than 1000 μg/m3, compared with the values of the surrounding air between 22 and 30 μg/m3. The nicotine level is definitely more important (average 5.53 μg/m3, field 1.5 to 17.9 μg/m3). Once the smoking bans inside the building were applied, one notes a clear improvement in terms of concentrations of pollutants. For dust, the concentration fell by 3 times (average: 130 μg/m3, range: 40 to 160 μg/m3) and that of nicotine by 10 times (average: 0.53 μg/m3, range: 0 to 1.69 μg/m3) compared to that found before smoking bans. The outdoor air RSP concentration was 22 μg/m3 or 10 times lower. Nicotine seems to be the best tracer for ETS free of interference, independent of location or season.
Tobacco Smoke Pollution , Nicotine , Environmental Monitoring , Risk Factors
Create date
27/01/2010 13:20
Last modification date
20/08/2019 14:20
Usage data