Degeneracy and disordered brain networks in psychiatric patients using multivariate structural covariance analyzes.
Details
Serval ID
serval:BIB_2E68B63EA815
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Degeneracy and disordered brain networks in psychiatric patients using multivariate structural covariance analyzes.
Journal
Frontiers in psychiatry
ISSN
1664-0640 (Print)
ISSN-L
1664-0640
Publication state
Published
Issued date
10/2023
Peer-reviewed
Oui
Volume
14
Pages
1272933
Language
english
Notes
Publication types: Journal Article
Publication Status: epublish
Publication Status: epublish
Abstract
In this study, we applied multivariate methods to identify brain regions that have a critical role in shaping the connectivity patterns of networks associated with major psychiatric diagnoses, including schizophrenia (SCH), major depressive disorder (MDD) and bipolar disorder (BD) and healthy controls (HC). We used T1w images from 164 subjects: Schizophrenia (n = 17), bipolar disorder (n = 25), major depressive disorder (n = 68) and a healthy control group (n = 54).
We extracted regions of interest (ROIs) using a method based on the SHOOT algorithm of the SPM12 toolbox. We then performed multivariate structural covariance between the groups. For the regions identified as significant in t term of their covariance value, we calculated their eigencentrality as a measure of the influence of brain regions within the network. We applied a significance threshold of p = 0.001. Finally, we performed a cluster analysis to determine groups of regions that had similar eigencentrality profiles in different pairwise comparison networks in the observed groups.
As a result, we obtained 4 clusters with different brain regions that were diagnosis-specific. Cluster 1 showed the strongest discriminative values between SCH and HC and SCH and BD. Cluster 2 had the strongest discriminative value for the MDD patients, cluster 3 - for the BD patients. Cluster 4 seemed to contribute almost equally to the discrimination between the four groups.
Our results suggest that we can use the multivariate structural covariance method to identify specific regions that have higher predictive value for specific psychiatric diagnoses. In our research, we have identified brain signatures that suggest that degeneracy shapes brain networks in different ways both within and across major psychiatric disorders.
We extracted regions of interest (ROIs) using a method based on the SHOOT algorithm of the SPM12 toolbox. We then performed multivariate structural covariance between the groups. For the regions identified as significant in t term of their covariance value, we calculated their eigencentrality as a measure of the influence of brain regions within the network. We applied a significance threshold of p = 0.001. Finally, we performed a cluster analysis to determine groups of regions that had similar eigencentrality profiles in different pairwise comparison networks in the observed groups.
As a result, we obtained 4 clusters with different brain regions that were diagnosis-specific. Cluster 1 showed the strongest discriminative values between SCH and HC and SCH and BD. Cluster 2 had the strongest discriminative value for the MDD patients, cluster 3 - for the BD patients. Cluster 4 seemed to contribute almost equally to the discrimination between the four groups.
Our results suggest that we can use the multivariate structural covariance method to identify specific regions that have higher predictive value for specific psychiatric diagnoses. In our research, we have identified brain signatures that suggest that degeneracy shapes brain networks in different ways both within and across major psychiatric disorders.
Keywords
bipolar disorder, major depressive disorder, neuroimaging, schizophrenia, structural covariance
Pubmed
Web of science
Open Access
Yes
Create date
06/11/2023 13:17
Last modification date
08/08/2024 6:31