Bone-cement interface of the glenoid component: stress analysis for varying cement thickness.

Details

Serval ID
serval:BIB_2A89C3F560BE
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Bone-cement interface of the glenoid component: stress analysis for varying cement thickness.
Journal
Clinical Biomechanics
Author(s)
Terrier A., Büchler P., Farron A.
ISSN
0268-0033
Publication state
Published
Issued date
08/2005
Peer-reviewed
Oui
Volume
20
Number
7
Pages
710-717
Language
english
Notes
Publication types: Comparative Study ; Evaluation Studies
Abstract
BACKGROUND: Although shoulder arthroplasty is an accepted treatment for osteoarthritis, loosening of the glenoid component, which mainly occurs at the bone-cement interface, remains a major concern. Presently, the mechanical effect of the cement mantel thickness on the bone-cement interface is still unclear. METHODS: Finite element analysis of a prosthetic scapula was used to evaluate the effect of cement thickness on stresses and micromotions at the bone-cement interface. The glenoid component was all-polyethylene, keeled and flat back. Cement mantel thickness was gradually increased from 0.5 to 2.0 mm. Two glenohumeral contact forces were applied: concentric and eccentric. Two extreme cases were considered for the bone-cement interface: bonded and debonded. FINDINGS: Within cement, stress increased as cement thickness decreased, reaching the fatigue limit below 1.0 mm. Bone stress was below its ultimate strength and was minimum between 1.0 and 1.5mm. Interface stress was close to the interface strength, and also minimum between 1.0 and 1.5 mm. Both the decentring of the load and the debonding of the interface increased the stress. INTERPRETATION: A cement thinning weakens the cement, but also the bone-cement interface, along the back-keel edges. Conversely, a cement thickening rigidifies the cemented implant, consequently increasing interfacial stresses and micromotions. To avoid both excessive cement fatigue and interface failure, an ideal cement thickness has been identified between 1.0 and 1.5 mm.
Keywords
Bone Cements/analysis, Bone Cements/chemistry, Cementation/methods, Compressive Strength, Computer Simulation, Elasticity, Equipment Failure Analysis/methods, Humans, Joint Prosthesis, Materials Testing/methods, Models, Biological, Models, Chemical, Prosthesis Implantation/methods, Shoulder Joint/chemistry, Shoulder Joint/physiopathology, Stress, Mechanical, Tensile Strength, Therapy, Computer-Assisted/methods
Pubmed
Web of science
Create date
28/01/2008 13:15
Last modification date
20/08/2019 14:10
Usage data