New insights into the long-term evolutionary history of the avian MHC

Details

Ressource 1Download: BIB_29BCB99D5A4D.P001.pdf (2509.13 [Ko])
State: Deleted
Version: After imprimatur
Serval ID
serval:BIB_29BCB99D5A4D
Type
PhD thesis: a PhD thesis.
Collection
Publications
Title
New insights into the long-term evolutionary history of the avian MHC
Author(s)
Burri R.
Director(s)
Fumagalli L.
Institution details
Université de Lausanne, Faculté de biologie et médecine
Address
Faculté de biologie et de médecine Université de Lausanne UNIL - Bugnon Rue du Bugnon 21 - bureau 4111 CH-1015 Lausanne SUISSE
Publication state
Accepted
Issued date
10/2010
Language
english
Abstract
SummaryGene duplication and neofunctidnalization are important processes in the evolution of phenotypic complexity. They account for important evolutionary novelties that confer ecological adaptation, such as the major histocompatibility complex (MHC), a multigene family with a central role in vertebrates' adaptive immune system. Multigene families, which evolved in large part through duplication, represent promising systems to study the still strongly depbated relative roles of neutral and adaptive processes in the evolution of phenotypic complexity. Detailed knowledge on ecological function and a well-characterized evolutionary history place the mammals' MHC amongst ideal study systems. However mammalian MHCs usually encompass several million base pairs and hold a large number of functional and non-functional duplicate genes, which makes their study complex. Avian MHCs on the other hand are usually way more compact, but the reconstruction of. their evolutionary history has proven notoriously difficult. However, no focused attempt has been undertaken so far to study the avian MHC evolutionary history in a broad phylogenetic context and using adequate gene regions.In the present PhD, we were able to make important contributions to the understanding of the long-term evolution of the avian MHC class II Β (MHCI1B). First, we isolated and characterized MHCIIB genes in barn owl (Tyto alba?, Strigiformes, Tytonidae), a species from an avian lineage in which MHC has not been studied so far. Our results revealed that with only two functional MHCIIB genes the MHC organization of barn owl may be similar to the 'minimal essential' MHC of chicken (Gallus gallus), indicating that simple MHC organization may be ancestral to birds. Taking advantage of the sequence information from barn owl, we studied the evolution of MHCIIB genes in 13 additional species of 'typical' owls (Strigiformes, Strigidae). Phylogenetic analyses revealed that according to their function, in owls the peptide-binding region (PBR) encoding exon 2 and the non-PBR encoding exon 3 evolve by different patterns. Exon 2 exhibited an evolutionary history of positive selection and recombination, while exon 3 traced duplication history and revealed two paralogs evolving divergently from each other in owls, and in a shorebird, the great snipe {Gallinago media). The results from exon 3 were the first ever from birds to demonstrate gene orthology in species that diverged tens of millions of years ago, and strongly questioned whether the taxa studied before provided an adequate picture of avian MHC evolution. In a follow-up study, we aimed at explaining a striking pattern revealed by phylogenetic trees analyzing the owl sequences along with MHCIIB sequences from other birds: One owl paralog (termed DAB1) grouped with sequences of passerines and falcons, while the other (DAB2) grouped with wildfowl, penguins and birds of prey. This could be explained by either a duplication event preceding the evolution of these bird orders, or by convergent evolution of similar sequences in a number of orders. With extensive phylogenetic analyses we were able to show, that indeed a duplication event preceeded the major avian radiation -100 my ago, and that following this duplication, the paralogs evolved under positive selection. Furthermore, we showed that the divergently evolving amino acid residues in the MHCIIB-encoded β-chain potentially interact with the MHCI I α-chain, and that molecular coevolution of the interacting residues may have been involved in the divergent evolution of the MHCIIB paralogs.The findings of this PhD are of particular interest to the understanding of the evolutionary history of the avian MHC and, by providing essential information on long-term gene history in the avian MHC, open promising perspectives for advances in the understanding of the evolution of multigene families in general, and for avian MHC organization in particular. Amongst others I discuss the importance of including protein structure in the phylogenetic study of multigene families, and the roles of ecological versus molecular selection pressures. I conclude by providing a population genomic perspective on avian MHC, which may serve as a basis for future research to investigate the relative roles of neutral processes involving effective population size effects and of adaptation in the evolution of avian MHC diversity and organization.RésuméLa duplication de gènes et leur néo-fonctionnalisation sont des processus importants dans l'évolution de la complexité phénotypique. Ils sont impliqués dans l'apparition d'importantes nouveautés évolutives favorisant l'adaptation écologique, comme c'est le cas pour le complexe majeur d'histocompatibilité <CMH), une famille de gènes jouant un rôle central dans le système immunitaire adaptatif des vertébrés. Les familles multigéniques représentent des systèmes prometteurs pour l'étude controversée des rôles relatifs des processus neutres et adaptatifs dans l'évolution de la complexité phénotypique. La connaissance détaillée de sa fonction écologique, ainsi que de son histoire évolutive, placent le CMH des mammifères parmi les candidats idéaux. Toutefois, les CMHs des mammifères comprennent habituellement plusieurs millions de paires de bases et sont formés par un grand nombre de gènes dupliqués, fonctionnels et non-fonctionnels, ce qui rend leur étude complexe. Au contraire, les CMHs des oiseaux sont généralement plus compacts, mais la reconstruction de leur histoire évolutive s'est révélée difficile. Aucune analyse spécifique n'a cependant été entreprise jusqu'à présent pour étudier l'histoire évolutive du CMH aviaire dans un large contexte phylogénétique et en utilisant des régions géniques adéquates.Ce travail de thèse a contribué à la compréhension de l'évolution à long-terme du CMH aviaire classe II Β (CMH II Β). Nous avons isolé et caractérisé les gènes CMH I IB de la chouette effraie (Tyto alba; Strigiformes, Tytonidae), une espèce appartenant à une lignée aviaire dont le CMH n'avait pas été étudié jusqu'ici. Avec uniquement deux gènes CMHIIB fonctionnels, l'organisation CMH de la chouette effraie semble être comparable à celle "minimale" du poulet (Gallus gallus), ce qui suggère qu'une organisation simple du CMH pourrait être ancestrale chez les oiseaux. En se basant sur l'information obtenue pour cette espèce, nous avons ensuite étudié l'évolution des gènes CMHIIB chez 13 espèces de chouettes "typiques" (Strigiformes, Strigidae). Les analyses phylogénétiques ont révélé que chez les chouettes, selon leur fonction, l'exon 2 codant pour la 'peptide-binding region' (PBR) et l'exon 3 ne codant pas pour la région PBR évoluent de manière distincte. L'exon 2 montre une histoire évolutive de sélection positive et recombinaison, tandis que l'exon 3 retrace l'histoire de duplication et révèle deux paralogues évoluant de façon divergente chez les chouettes, ainsi que chez un limicole, la bécassine double (Gallinago media). Les résultats découlant de l'analyse de l'exon 3 ont montré pour la première fois chez les oiseaux une orthologie de gènes chez des espèces ayant divergé il y a des dizaines de millions d'années. Dans une deuxième étude, nous avons voulu expliquer le pattern surprenant révélé par les arbres phylogénétiques lorsque les séquences CMHIIB des chouettes sont analysées avec les séquences d'autres oiseaux: un paralogue de chouette (appelé DABI) forme un groupe avec les séquences de passereaux et faucons, tandis que l'autre (DAB2) se regroupe avec les gallo-ansériformes, les manchots et les rapaces diurnes. Ceci pourrait être expliqué soit par une duplication qui a précédé l'évolution de ces ordres aviaires soit par évolution convergente dans un certain nombre d'ordres. Grâce à des analyses phylogénétiques approfondies, nous avons pu montrer qu'un événement de duplication a effectivement précédé la radiation aviaire principale d'il y a environ 100 millions d'années, et qu'après cette duplication les paralogues ont évolué sous sélection positive. De plus, les résidus d'acides aminés évoluant de façon divergente dans la chaîne β codée par le CMHIIB interagissent potentiellement avec la chaîne α codée par le CMHII, et que la coévolution moléculaire de ces résidus pourrait être à la base de l'évolution divergente des paralogues CMHIIB.Dans cette thèse sont discutés entre autres l'importance d'inclure la structure des protéines dans l'étude phylogénétique des familles multigéniques, ainsi que les rôles respectifs des pressions sélectives écologique et moléculaire. La conclusion comporte une perspective sur la génomique des populations du CMH aviaire, qui pourrait servir de base pour de futures recherches sur les rôles relatifs joués par Îes processus neutres comprenant les effets de la taille efficace des populations et l'adaptation dans l'évolution de la diversité et l'organisation du MHC aviaire.
Create date
29/11/2010 16:14
Last modification date
20/08/2019 14:09
Usage data