Validation of and comparison between a semidistributed rainfall-runoff hydrological model (PREVAH) and a spatially distributed snow-evolution model (SnowModel) for snow cover prediction in mountain ecosystems

Details

Serval ID
serval:BIB_1EB3ABBBF59A
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Validation of and comparison between a semidistributed rainfall-runoff hydrological model (PREVAH) and a spatially distributed snow-evolution model (SnowModel) for snow cover prediction in mountain ecosystems
Journal
Ecohydrology
Author(s)
Randin C.F. (co-first), Dedieu J.P. (co-first), Zappa M., Long L., Dullinger S. (co-last)
ISSN
1936-0592 (electronic)
ISSN-L
1936-0584
Publication state
Published
Issued date
2015
Volume
8
Number
7
Pages
1181-1193
Language
english
Abstract
Snow cover is an important control in mountain environments and a shift of the snow-free period triggered by climate warming can strongly impact ecosystem dynamics. Changing snow patterns can have severe effects on alpine plant distribution and diversity. It thus becomes urgent to provide spatially explicit assessments of snow cover changes that can be incorporated into correlative or empirical species distribution models (SDMs). Here, we provide for the first time a with a lower overestimation comparison of two physically based snow distribution models (PREVAH and SnowModel) to produce snow cover maps (SCMs) at a fine spatial resolution in a mountain landscape in Austria. SCMs have been evaluated with SPOT-HRVIR images and predictions of snow water equivalent from the two models with ground measurements. Finally, SCMs of the two models have been compared under a climate warming scenario for the end of the century. The predictive performances of PREVAH and SnowModel were similar when validated with the SPOT images. However, the tendency to overestimate snow cover was slightly lower with SnowModel during the accumulation period, whereas it was lower with PREVAH during the melting period. The rate of true positives during the melting period was two times higher on average with SnowModel with a lower overestimation of snow water equivalent. Our results allow for recommending the use of SnowModel in SDMs because it better captures persisting snow patches at the end of the snow season, which is important when modelling the response of species to long-lasting snow cover and evaluating whether they might survive under climate change.
Keywords
snow cover, alpine ecology, species distribution model (SDM), climate change
Web of science
Funding(s)
Swiss National Science Foundation / Careers / PBLA33-118505
Create date
19/11/2015 9:22
Last modification date
05/04/2024 7:14
Usage data