KAP1 controls endogenous retroviruses in embryonic stem cells.

Details

Serval ID
serval:BIB_1912A1F4887B
Type
Article: article from journal or magazin.
Collection
Publications
Title
KAP1 controls endogenous retroviruses in embryonic stem cells.
Journal
Nature
Author(s)
Rowe Helen M., Jakobsson Johan, Mesnard Daniel, Rougemont Jacques, Reynard Severine, Aktas Tugce, Maillard Pierre V., Layard-Liesching Hillary, Verp Sonia, Marquis Julien, Spitz Francois, Constam Daniel B., Trono Didier
Publication state
Published
Issued date
01/2010
Volume
463
Number
7278
Pages
237-240
Language
english
Abstract
More than forty per cent of the mammalian genome is derived from retroelements, of which about one-quarter are endogenous retroviruses (ERVs). Some are still active, notably in mice the highly polymorphic early transposon (ETn)/MusD and intracisternal A-type particles (IAP). ERVs are transcriptionally silenced during early embryogenesis by histone and DNA methylation (and reviewed in ref. 7), although the initiators of this process, which is essential to protect genome integrity, remain largely unknown. KAP1 (KRAB-associated protein 1, also known as tripartite motif-containing protein 28, TRIM28) represses genes by recruiting the histone methyltransferase SETDB1, heterochromatin protein 1 (HP1) and the NuRD histone deacetylase complex, but few of its physiological targets are known. Two lines of evidence suggest that KAP1-mediated repression could contribute to the control of ERVs: first, KAP1 can trigger permanent gene silencing during early embryogenesis, and second, a KAP1 complex silences the retrovirus murine leukaemia virus in embryonic cells. Consistent with this hypothesis, here we show that KAP1 deletion leads to a marked upregulation of a range of ERVs, in particular IAP elements, in mouse embryonic stem (ES) cells and in early embryos. We further demonstrate that KAP1 acts synergistically with DNA methylation to silence IAP elements, and that it is enriched at the 5’ untranslated region (5’UTR) of IAP genomes, where KAP1 deletion leads to the loss of histone 3 lysine 9 trimethylation (H3K9me3), a hallmark of KAP1-mediated repression. Correspondingly, IAP 5’UTR sequences can impose in cis KAP1-dependent repression on a heterologous promoter in ES cells. Our results establish that KAP1 controls endogenous retroelements during early embryonic development.
Keywords
Animals, Mice, Genes, Reporter, 5’ Untranslated Regions/genetics, Tripartite Motif-Containing Protein 28, *Gene Silencing, Acetylation, DNA Methylation, Embryo, Mammalian/metabolism/virology, Embryonic Stem Cells/*metabolism/virology, Endogenous Retroviruses/*genetics, Fibroblasts, Genes, Intracisternal A-Particle/*genetics, Green Fluorescent Proteins/genetics/metabolism, Histones/metabolism, Leukemia Virus, Murine/genetics/physiology, Lysine/metabolism, Methylation, Nuclear Proteins/deficiency/genetics/*metabolism, Promoter Regions, Genetic/genetics, Repressor Proteins/deficiency/genetics/*metabolism
Pubmed
Create date
19/02/2020 12:23
Last modification date
19/06/2020 5:26
Usage data