NMDA-receptor-mediated, cell-specific integration of new neurons in adult dentate gyrus.

Details

Serval ID
serval:BIB_11E5DBF58E97
Type
Article: article from journal or magazin.
Collection
Publications
Title
NMDA-receptor-mediated, cell-specific integration of new neurons in adult dentate gyrus.
Journal
Nature
Author(s)
Tashiro A., Sandler V.M., Toni N., Zhao C., Gage F.H.
ISSN
1476-4687[electronic]
Publication state
Published
Issued date
2006
Peer-reviewed
Oui
Volume
442
Number
7105
Pages
929-933
Language
english
Notes
Publication types: In Vitro ; Journal Article ; Research Support, N.I.H., Extramural ; Research Support, Non-U.S. Gov't ; Research Support, U.S. Gov't, Non-P.H.S. Publication Status: ppublish
Abstract
New neurons are continuously integrated into existing neural circuits in adult dentate gyrus of the mammalian brain. Accumulating evidence indicates that these new neurons are involved in learning and memory. A substantial fraction of newly born neurons die before they mature and the survival of new neurons is regulated in an experience-dependent manner, raising the possibility that the selective survival or death of new neurons has a direct role in a process of learning and memory--such as information storage--through the information-specific construction of new circuits. However, a critical assumption of this hypothesis is that the survival or death decision of new neurons is information-specific. Because neurons receive their information primarily through their input synaptic activity, we investigated whether the survival of new neurons is regulated by input activity in a cell-specific manner. Here we developed a retrovirus-mediated, single-cell gene knockout technique in mice and showed that the survival of new neurons is competitively regulated by their own NMDA-type glutamate receptor during a short, critical period soon after neuronal birth. This finding indicates that the survival of new neurons and the resulting formation of new circuits are regulated in an input-dependent, cell-specific manner. Therefore, the circuits formed by new neurons may represent information associated with input activity within a short time window in the critical period. This information-specific addition of new circuits through selective survival or death of new neurons may be a unique attribute of new neurons that enables them to play a critical role in learning and memory.
Keywords
Aging/physiology, Animals, Cell Death, Cell Survival, Dentate Gyrus/cytology, Dentate Gyrus/physiology, Learning/physiology, Mice, Models, Biological, Neurons/cytology, Neurons/drug effects, Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors, Receptors, N-Methyl-D-Aspartate/deficiency
Pubmed
Web of science
Create date
22/01/2010 7:49
Last modification date
20/08/2019 12:39
Usage data