Fast screening and confirmation of doping agents by UHPLC-QTOF-MS/MS


Serval ID
Inproceedings: an article in a conference proceedings.
Publication sub-type
Abstract (Abstract): shot summary in a article that contain essentials elements presented during a scientific conference, lecture or from a poster.
Fast screening and confirmation of doping agents by UHPLC-QTOF-MS/MS
Title of the conference
Annales de toxicologie analytique
Badoud F., Grata E., Perrenoud L., Saugy M., Rudaz S., Veuthey J.L.
EDP Sciences SA
Société Française de Toxicologie Analytique
Publication state
Issued date
Goullé Jean-Pierre
Oral présentations : 050
Introduction: The general strategy to perform anti-doping analysis starts with a screening followed by a confirmatory step when a sample is suspected to be positive. The screening step should be fast, generic and able to highlight any sample that may contain a prohibited substance by avoiding false negative and reducing false positive results. The confirmatory step is a dedicated procedure comprising a selective sample preparation and detection mode.
Aim: The purpose of the study is to develop rapid screening and selective confirmatory strategies to detect and identify 103 doping agents in urine.
Methods: For the screening, urine samples were simply diluted by a factor 2 with ultra-pure water and directly injected ("dilute and shoot") in the ultrahigh- pressure liquid chromatography (UHPLC). The UHPLC separation was performed in two gradients (ESI positive and negative) from 5/95 to 95/5% of MeCN/Water containing 0.1% formic acid. The gradient analysis time is 9 min including 3 min reequilibration. Analytes detection was performed in full scan mode on a quadrupole time-of-flight (QTOF) mass spectrometer by acquiring the exact mass of the protonated (ESI positive) or deprotonated (ESI negative) molecular ion. For the confirmatory analysis, urine samples were extracted on SPE 96-well plate with mixed-mode cation (MCX) for basic and neutral compounds or anion exchange (MAX) sorbents for acidic molecules. The analytes were eluted in 3 min (including 1.5 min reequilibration) with a S1-25 Ann Toxicol Anal. 2009; 21(S1) Abstracts gradient from 5/95 to 95/5% of MeCN/Water containing 0.1% formic acid. Analytes confirmation was performed in MS and MS/MS mode on a QTOF mass spectrometer.
Results: In the screening and confirmatory analysis, basic and neutral analytes were analysed in the positive ESI mode, whereas acidic compounds were analysed in the negative mode. The analyte identification was based on retention time (tR) and exact mass measurement. "Dilute and shoot" was used as a generic sample treatment in the screening procedure, but matrix effect (e.g., ion suppression) cannot be avoided. However, the sensitivity was sufficient for all analytes to reach the minimal required performance limit (MRPL) required by the World Anti Doping Agency (WADA). To avoid time-consuming confirmatory analysis of false positive samples, a pre-confirmatory step was added. It consists of the sample re-injection, the acquisition of MS/MS spectra and the comparison to reference material. For the confirmatory analysis, urine samples were extracted by SPE allowing a pre-concentration of the analyte. A fast chromatographic separation was developed as a single analyte has to be confirmed. A dedicated QTOF-MS and MS/MS acquisition was performed to acquire within the same run a parallel scanning of two functions. Low collision energy was applied in the first channel to obtain the protonated molecular ion (QTOF-MS), while dedicated collision energy was set in the second channel to obtain fragmented ions (QTOF-MS/MS). Enough identification points were obtained to compare the spectra with reference material and negative urine sample. Finally, the entire process was validated and matrix effects quantified.
Conclusion: Thanks to the coupling of UHPLC with the QTOF mass spectrometer, high tR repeatability, sensitivity, mass accuracy and mass resolution over a broad mass range were obtained. The method was sensitive, robust and reliable enough to detect and identify doping agents in urine. Keywords: screening, confirmatory analysis, UHPLC, QTOF, doping agents
screening, confirmatory analysis, UHPLC, QTOF, doping agents
Create date
16/02/2010 17:26
Last modification date
20/08/2019 13:39
Usage data