Lassa Virus Cell Entry via Dystroglycan Involves an Unusual Pathway of Macropinocytosis.

Details

Serval ID
serval:BIB_10EB18F0A7B6
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
Lassa Virus Cell Entry via Dystroglycan Involves an Unusual Pathway of Macropinocytosis.
Journal
Journal of virology
Author(s)
Oppliger J., Torriani G., Herrador A., Kunz S.
ISSN
1098-5514 (Electronic)
ISSN-L
0022-538X
Publication state
Published
Issued date
15/07/2016
Peer-reviewed
Oui
Volume
90
Number
14
Pages
6412-6429
Language
english
Notes
Publication types: Journal Article
Publication Status: epublish
Abstract
The pathogenic Old World arenavirus Lassa virus (LASV) causes a severe hemorrhagic fever with a high rate of mortality in humans. Several LASV receptors, including dystroglycan (DG), TAM receptor tyrosine kinases, and C-type lectins, have been identified, suggesting complex receptor use. Upon receptor binding, LASV enters the host cell via an unknown clathrin- and dynamin-independent pathway that delivers the virus to late endosomes, where fusion occurs. Here we investigated the mechanisms underlying LASV endocytosis in human cells in the context of productive arenavirus infection, using recombinant lymphocytic choriomeningitis virus (rLCMV) expressing the LASV glycoprotein (rLCMV-LASVGP). We found that rLCMV-LASVGP entered human epithelial cells via DG using a macropinocytosis-related pathway independently of alternative receptors. Dystroglycan-mediated entry of rLCMV-LASVGP required sodium hydrogen exchangers, actin, and the GTPase Cdc42 and its downstream targets, p21-activating kinase-1 (PAK1) and Wiskott-Aldrich syndrome protein (N-Wasp). Unlike other viruses that enter cells via macropinocytosis, rLCMV-LASVGP entry did not induce overt changes in cellular morphology and hardly affected actin dynamics or fluid uptake. Screening of kinase inhibitors identified protein kinase C, phosphoinositide 3-kinase, and the receptor tyrosine kinase human hepatocyte growth factor receptor (HGFR) to be regulators of rLCMV-LASVGP entry. The HGFR inhibitor EMD 1214063, a candidate anticancer drug, showed antiviral activity against rLCMV-LASVGP at the level of entry. When combined with ribavirin, which is currently used to treat human arenavirus infection, EMD 1214063 showed additive antiviral effects. In sum, our study reveals that DG can link LASV to an unusual pathway of macropinocytosis that causes only minimal perturbation of the host cell and identifies cellular kinases to be possible novel targets for therapeutic intervention.
Lassa virus (LASV) causes several hundred thousand infections per year in Western Africa, with the mortality rate among hospitalized patients being high. The current lack of a vaccine and the limited therapeutic options at hand make the development of new drugs against LASV a high priority. In the present study, we uncover that LASV entry into human cells via its major receptor, dystroglycan, involves an unusual pathway of macropinocytosis and define a set of cellular factors implicated in the regulation of LASV entry. A screen of kinase inhibitors revealed HGFR to be a possible candidate target for antiviral drugs against LASV. An HGFR candidate inhibitor currently being evaluated for cancer treatment showed potent antiviral activity and additive drug effects with ribavirin, which is used in the clinic to treat human LASV infection. In sum, our study reveals novel fundamental aspects of the LASV-host cell interaction and highlights a possible candidate drug target for therapeutic intervention.

Keywords
A549 Cells, Dystroglycans/metabolism, Endosomes/metabolism, Endosomes/virology, Epithelial Cells/metabolism, Epithelial Cells/virology, Humans, Lassa Fever/metabolism, Lassa Fever/virology, Lassa virus/pathogenicity, Phosphatidylinositol 3-Kinases/metabolism, Pinocytosis/physiology, Receptors, Virus/metabolism, Signal Transduction, Virus Internalization, Wiskott-Aldrich Syndrome Protein/metabolism
Pubmed
Open Access
Yes
Create date
29/05/2016 14:32
Last modification date
20/08/2019 12:38
Usage data