A metabolite-based machine learning approach to diagnose Alzheimer-type dementia in blood: Results from the European Medical Information Framework for Alzheimer disease biomarker discovery cohort.

Details

Ressource 1Download: 31890857_BIB_0E61EF2D9A41.pdf (731.47 [Ko])
State: Public
Version: Final published version
License: CC BY-NC-ND 4.0
Serval ID
serval:BIB_0E61EF2D9A41
Type
Article: article from journal or magazin.
Collection
Publications
Institution
Title
A metabolite-based machine learning approach to diagnose Alzheimer-type dementia in blood: Results from the European Medical Information Framework for Alzheimer disease biomarker discovery cohort.
Journal
Alzheimer's & dementia
Author(s)
Stamate D., Kim M., Proitsi P., Westwood S., Baird A., Nevado-Holgado A., Hye A., Bos I., Vos SJB, Vandenberghe R., Teunissen C.E., Kate M.T., Scheltens P., Gabel S., Meersmans K., Blin O., Richardson J., De Roeck E., Engelborghs S., Sleegers K., Bordet R., Ramit L., Kettunen P., Tsolaki M., Verhey F., Alcolea D., Lléo A., Peyratout G., Tainta M., Johannsen P., Freund-Levi Y., Frölich L., Dobricic V., Frisoni G.B., Molinuevo J.L., Wallin A., Popp J., Martinez-Lage P., Bertram L., Blennow K., Zetterberg H., Streffer J., Visser P.J., Lovestone S., Legido-Quigley C.
ISSN
2352-8737 (Electronic)
ISSN-L
2352-8737
Publication state
Published
Issued date
2019
Peer-reviewed
Oui
Volume
5
Pages
933-938
Language
english
Notes
Publication types: Journal Article
Publication Status: epublish
Abstract
Machine learning (ML) may harbor the potential to capture the metabolic complexity in Alzheimer Disease (AD). Here we set out to test the performance of metabolites in blood to categorize AD when compared to CSF biomarkers.
This study analyzed samples from 242 cognitively normal (CN) people and 115 with AD-type dementia utilizing plasma metabolites (n = 883). Deep Learning (DL), Extreme Gradient Boosting (XGBoost) and Random Forest (RF) were used to differentiate AD from CN. These models were internally validated using Nested Cross Validation (NCV).
On the test data, DL produced the AUC of 0.85 (0.80-0.89), XGBoost produced 0.88 (0.86-0.89) and RF produced 0.85 (0.83-0.87). By comparison, CSF measures of amyloid, p-tau and t-tau (together with age and gender) produced with XGBoost the AUC values of 0.78, 0.83 and 0.87, respectively.
This study showed that plasma metabolites have the potential to match the AUC of well-established AD CSF biomarkers in a relatively small cohort. Further studies in independent cohorts are needed to validate whether this specific panel of blood metabolites can separate AD from controls, and how specific it is for AD as compared with other neurodegenerative disorders.
Keywords
Alzheimer's disease, Biomarkers, EMIF-AD, Machine-Learning, Metabolomics
Pubmed
Open Access
Yes
Create date
03/01/2020 21:21
Last modification date
30/04/2021 6:08
Usage data