Muscle tissue adaptations of high-altitude natives to training in chronic hypoxia or acute normoxia.

Details

Serval ID
serval:BIB_0DCD877CC032
Type
Article: article from journal or magazin.
Collection
Publications
Title
Muscle tissue adaptations of high-altitude natives to training in chronic hypoxia or acute normoxia.
Journal
Journal of Applied Physiology
Author(s)
Desplanches D., Hoppeler H., Tüscher L., Mayet M.H., Spielvogel H., Ferretti G., Kayser B., Leuenberger M., Grünenfelder A., Favier R.
ISSN
8750-7587 (Print)
ISSN-L
0161-7567
Publication state
Published
Issued date
1996
Volume
81
Number
5
Pages
1946-1951
Language
english
Abstract
Twenty healthy high-altitude natives, residents of La Paz, Bolivia (3,600 m), participated in 6 wk of endurance exercise training on bicycle ergometers, 5 times/wk, 30 min/session, as previously described in normoxia-trained sea-level natives (H. Hoppeler, H. Howald, K. E. Conley, S. L. Lindstedt, H. Claassen, P. Vock, and E. R. Weibel. J. Appl. Physiol. 59: 320-327, 1985). A first group of 10 subjects was trained in chronic hypoxia (HT; barometric pressure = 500 mmHg; inspired O2 fraction = 0.209); a second group of 10 subjects was trained in acute normoxia (NT; barometric pressure = 500 mmHg; inspired O2 fraction = 0.314). The workloads were adjusted to approximately 70% of peak O2 consumption (VO2peak) measured either in hypoxia for the HT group or in normoxia for the NT group. VO2peak determination and biopsies of the vastus lateralis muscle were taken before and after the training program. VO2peak in the HT group was increased (14%) in a way similar to that in NT sea-level natives with the same protocol. Moreover, VO2peak in the NT group was not further increased by additional O2 delivery during the training session. HT or NT induced similar increases in muscle capillary-to-fiber ratio (26%) and capillary density (19%) as well as in the volume density of total mitochondria and citrate synthase activity (45%). It is concluded that high-altitude natives have a reduced capillarity and muscle tissue oxidative capacity; however, their training response is similar to that of sea-level residents, independent of whether training is carried out in hypobaric hypoxia or hypobaric normoxia.
Keywords
Acclimatization/physiology, Adult, Altitude, Anoxia/physiopathology, Capillaries/physiology, Capillaries/ultrastructure, Chronic Disease, Histocytochemistry, Humans, Male, Microscopy, Electron, Muscle Fibers, Skeletal/physiology, Muscle Fibers, Skeletal/ultrastructure, Muscle, Skeletal/metabolism, Muscle, Skeletal/physiology, Oxygen Consumption/physiology, Physical Endurance, Physical Fitness
Pubmed
Web of science
Create date
19/09/2013 11:01
Last modification date
20/08/2019 13:34
Usage data