Oxytocin/vasopressin-like peptide inotocin regulates cuticular hydrocarbon synthesis and water balancing in ants.

Details

Ressource 1Download: PNASAkiko5597.full.pdf (2205.38 [Ko])
State: Public
Version: Final published version
License: CC BY 4.0
Secondary document(s)
Download: 452255_2_other__plvg3t.pdf (5729.48 [Ko])
State: Public
Version: author
License: Not specified
Serval ID
serval:BIB_08F06AAF011C
Type
Article: article from journal or magazin.
Collection
Publications
Title
Oxytocin/vasopressin-like peptide inotocin regulates cuticular hydrocarbon synthesis and water balancing in ants.
Journal
Proceedings of the National Academy of Sciences of the United States of America
Author(s)
Koto A., Motoyama N., Tahara H., McGregor S., Moriyama M., Okabe T., Miura M., Keller L.
ISSN
1091-6490 (Electronic)
ISSN-L
0027-8424
Publication state
Published
Issued date
19/03/2019
Peer-reviewed
Oui
Volume
116
Number
12
Pages
5597-5606
Language
english
Notes
Publication types: Journal Article ; Research Support, Non-U.S. Gov't
Publication Status: ppublish
Abstract
Oxytocin/vasopressin-like peptides are important regulators of physiology and social behavior in vertebrates. However, the function of inotocin, the homologous peptide in arthropods, remains largely unknown. Here, we show that the level of expression of inotocin and inotocin receptor are correlated with task allocation in the ant Camponotus fellah Both genes are up-regulated when workers age and switch tasks from nursing to foraging. in situ hybridization revealed that inotocin receptor is specifically expressed in oenocytes, which are specialized cells synthesizing cuticular hydrocarbons which function as desiccation barriers in insects and for social recognition in ants. dsRNA injection targeting inotocin receptor, together with pharmacological treatments using three identified antagonists blocking inotocin signaling, revealed that inotocin signaling regulates the expression of cytochrome P450 4G1 (CYP4G1) and the synthesis of cuticular hydrocarbons, which play an important role in desiccation resistance once workers initiate foraging.
Keywords
Animal Scales/growth & development, Animal Scales/metabolism, Animals, Ants/physiology, Hydrocarbons, Insecta/metabolism, Oxytocin/analogs & derivatives, Oxytocin/metabolism, Social Behavior, Vasopressins/analysis, Vasopressins/metabolism, Water/metabolism, Water-Electrolyte Balance/physiology, behavioral tracking, cuticular hydrocarbon, division of labor, oxytocin/vasopressin-like peptide, social insect
Pubmed
Web of science
Open Access
Yes
Create date
04/02/2019 12:39
Last modification date
20/08/2019 13:31
Usage data